晶體純物質有固定熔點;不純物質凝固點與成分有關(凝固點不固定)。
非晶體物質,如玻璃、水泥、石蠟、塑料等,受熱變軟,漸變流動性(軟化過程)直至液體,沒有熔點。
沸點指液體飽和蒸氣壓與外界壓強相同時的溫度,外壓力為標準壓(1.01×105Pa)時,稱正常沸點。外界壓強越低,沸點也越低,因此減壓可降低沸點。沸點時呈氣、液平衡狀態。
(1)由周期表看主族單質的熔、沸點
同一主族單質的熔點基本上是越向下金屬熔點漸低;而非金屬單質熔點、沸點漸高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔點越低,與金屬族相似。還有ⅢA族的鎵熔點比銦、鉈低,ⅣA族的錫熔點比鉛低。
(2)同周期中的幾個區域的熔點規律
①高熔點單質
C,Si,B三角形小區域,因其為原子晶體,熔點高。金剛石和石墨的熔點最高大于3550℃,金屬元素的高熔點區在過渡元素的中部和中下部,其最高熔點為鎢(3410℃)。
②低熔點單質
非金屬低熔點單質集中于周期表的右和右上方,另有IA的氫氣。其中稀有氣體熔、沸點均為同周期的最低者,而氦是熔點(-272.2℃,26×105Pa)、沸點(268.9℃)最低。
金屬的低熔點區有兩處:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔點是Hg(-38.87℃),近常溫呈液態的鎵(29.78℃)銫(28.4℃),體溫即能使其熔化。
(3)從晶體類型看熔、沸點規律
原子晶體的熔、沸點高于離子晶體,又高于分子晶體。金屬單質和合金屬于金屬晶體,其中熔、沸點高的比例數很大(但也有低的)。
在原子晶體中成鍵元素之間共價鍵越短的鍵能越大,則熔點越高。判斷時可由原子半徑推導出鍵長、鍵能再比較。如熔點:金剛石>碳化硅>晶體硅
分子晶體由分子間作用力而定,其判斷思路是:
①結構性質相似的物質,相對分子質量大,范德華力大,則熔、沸點也相應高。如烴的同系物、鹵素單質、稀有氣體等。
②相對分子質量相同,化學式也相同的物質(同分異構體),一般烴中支鏈越多,熔沸點越低。烴的衍生物中醇的沸點高于醚;羧酸沸點高于酯;油脂中不飽和程度越大,則熔點越低。如:油酸甘油酯常溫時為液體,而硬脂酸甘油酯呈固態。
上述情況的特殊性最主要的是相對分子質量小而沸點高的三種氣態氫化物:NH3,H2O,HF比同族絕大多數氣態氫化物的沸點高得多(主要因為有氫鍵)。
(4)某些物質熔沸點高、低的規律性
①同周期主族(短周期)金屬熔點。如Li<Be,Na<Mg<Al
②堿土金屬氧化物的熔點均在2000℃以上,比其他族氧化物顯著高,所以氧化鎂、氧化鋁是常用的耐火材料。
③鹵化鈉(離子型鹵化物)熔點隨鹵素的非金屬性漸弱而降低。如:NaF>NaCl>NaBr>NaI。